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The role of climate forcing in the population dynamics of infectious
diseases has typically been revealed via retrospective analyses
of incidence records aggregated across space and, in particular,
over whole cities. Here, we focus on the transmission dynamics of
rotavirus, the main diarrheal disease in infants and young chil-
dren, within the megacity of Dhaka, Bangladesh. We identify two
zones, the densely urbanized core and the more rural periphery,
that respond differentially to flooding. Moreover, disease sea-
sonality differs substantially between these regions, spanning
variation comparable to the variation from tropical to temperate
regions. By combining process-based models with an extensive
disease surveillance record, we show that the response to climate
forcing is mainly seasonal in the core, where a more endemic trans-
mission resulting from an asymptomatic reservoir facilitates the
response to the monsoons. The force of infection in this monsoon
peak can be an order of magnitude larger than the force of infection
in the more epidemic periphery, which exhibits little or no post-
monsoon outbreak in a pattern typical of nearby rural areas. A
typically smaller peak during the monsoon season nevertheless
shows sensitivity to interannual variability in flooding. High human
density in the core is one explanation for enhanced transmission
during troughs and an associated seasonal monsoon response in
this diarrheal disease, which unlike cholera, has not been widely
viewed as climate-sensitive. Spatial demographic, socioeconomic,
and environmental heterogeneity can create reservoirs of infection
and enhance the sensitivity of disease systems to climate forcing,
especially in the populated cities of the developing world.

monsoon flooding | diarrheal disease | rotavirus transmission |
epidemiological model | urban health

Many infectious diseases, especially those infectious diseases
that are water-borne and vector-borne, have been shown

to exhibit significant interannual variability in the size of seasonal
outbreaks (e.g., 1–6). Identification of climate factors shaping
interannual and seasonal variability is prerequisite to an un-
derstanding of the basic transmission biology of these environ-
mentally driven diseases, and of their response to climate change.
The impact of climate factors on the population dynamics of in-
fectious diseases has typically been addressed at large spatial scales
by aggregating surveillance data over whole countries, regions, and
cities (e.g., 3, 4, 6–8). Global climate drivers, such as the El Niño
Southern Oscillation (ENSO), are expected to operate over large
spatial scales, synchronizing fluctuations of disease incidence across
space [i.e., the Moran effect in population dynamics (9, 10)]. A
recent study has shown, however, that the spatiotemporal dynamics
of cholera in Dhaka, Bangladesh, are not homogeneous at intra-
urban scales (11). Two regions or clusters were identified, corre-
sponding, respectively, to the highly populated core and the more
rural periphery. The urban core was shown to be more climate-
sensitive, acting to propagate climate perturbations in cholera in-
fection risk to the rest of the city. Our study addresses whether such
spatial heterogeneity is also visible in the response to climate

forcing at seasonal and interannual time scales in another
major diarrheal infection, rotavirus. Because, unlike cholera,
rotavirus does not appear to possess an environmental trans-
mission pathway, it has not been viewed as a climate-sensitive
infection. Here, we examine the role of the monsoons, and
particularly flooding, in modulating the transmission of rota-
virus. We inquire into whether such an effect might vary across
local scales within a large urban environment.
Rotavirus is the most common cause of diarrhea among in-

fants and young children worldwide, responsible for 40% of
childhood gastroenteritis hospitalizations and 37% of diarrhea-
related deaths in children younger than 5 y (12, 13). This disease
was recently reported to be the second most commonly isolated
pathogen after Vibrio cholerae among adults attending urban and
rural treatment facilities in Bangladesh (14). Rotavirus is trans-
mitted primarily via the fecal-oral route, and two main seasonal
patterns have been described. In temperate regions, incidence
tends to peak during winter months (15–20). In the tropics, in-
cidence exhibits less pronounced seasonal variation (16, 21), with
year-round incidence and peaks during summer or fall following
monsoon rains, as in Bangladesh (22, 23). Despite these con-
trasting patterns, few correlational studies have statistically as-
sociated environmental variables with rotavirus incidence (24,
25). We focus here on the monsoon season, and on flooding in
particular, which is both a major environmental disturbance in
Bangladesh and one of the more prominent local manifestations
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of the ENSO in this region (26). Specifically, we implement
stochastic transmission models to explore the effects of climate
forcing within and between years, and across regions of the city.
More specifically, they allow us to estimate and compare sea-
sonal transmission intensity in the core and periphery of the city.
Our analyses show that the risk of rotavirus is far higher within

the urban core, and aggregation of cases reveals distinct seasonal
patterns in the core and periphery, with two peaks per year in the
former (in the winter and monsoon seasons) and a single winter
peak, with the second one usually absent, in the latter. Pro-
nounced differences are further identified in the force of in-
fection throughout the year and in its response to the monsoons,
with distinct effects at the seasonal and interannual time scales
for the core and periphery of the city, respectively. These find-
ings underscore the importance of spatial heterogeneity when
addressing the role of climate forcing in urban environments. An
infection that is not typically considered climate-sensitive can be
seen to be so within the highly populated core of the city. We
discuss implications for the sensitivity of infectious diseases to
changes in climate in the context of the accelerating growth of
cities in decades to come.

Results
The aggregation of the 22 y of data by core and periphery (Fig.
1A) reveals that the incidence rate in the core is almost threefold
the incidence rate in the periphery (Fig. 1B). The two zones
display distinct, hitherto unremarked, patterns of seasonality,
which are also representative of variation at the thana level (Fig.
S1). Specifically, rotavirus cases in the core exhibit a temporal
pattern similar to the pattern described previously for tropical
countries, with one peak during winter months and another
during the monsoon season (Fig. 1C). The average number of
reported cases cumulating from June to September for the
monsoon season is comparable to the number of reported cases
obtained from November to February for the winter season (6%
smaller). However, the second peak in cases is less pronounced
in the periphery, and less than half the size of the winter peak
(57% smaller; Fig. 1D). A similar seasonal pattern is found in
Matlab, a rural area 55 km southeast of Dhaka (Fig. 1E). These

seasonal patterns suggest important differences in disease
transmission within the city. In terms of climate fluctuations,
severity of flooding shows year-to-year variation, with the
most severe floods recorded for the years 1998, 2004, and
2007 (Fig. 1B).
Using a stochastic transmission model (Fig. 2), we tested two

different hypotheses. The best model includes flooding as a
covariate and performs significantly better than the model
without this interannual effect, based on a likelihood ratio test

A B

C D E

Fig. 1. Data. (A) Administrative subdivisions or thanas of Dhaka are divided into two groups: the core region (blue) and the periphery region (cyan),
according to the grouping proposed by Reiner et al. (11). The thana in white was excluded from the analyses because of a lack of data before 2001, when it
was created. The yellow dot indicates the location of the Dhaka Hospital. (B) Monthly cases of rotavirus from 1990 to 2011 aggregated by region and
normalized by population size and annual flooding index (in red); the 95% confidence intervals of a binomial distribution test are shaded in light colors. (C–E)
Box plot of the normalized rotavirus cases by month per region. Matlab is a rural area of Bangladesh located 55 km southeast of Dhaka.

Fig. 2. Diagram of the transmission model of rotavirus. The arrows indicate
rates of flow among compartments. Each population, for the core and pe-
riphery, respectively, is divided into the following classes: newborn (M),
susceptible (S1, S2, S3), and infected (I1, I2, I3). The three levels of susceptible
and infected individuals are meant to represent the recurrent exposure of
individuals to the pathogen, as they acquire increasing protection and
eventually become asymptomatic (after the second infection). The effect of
movement between populations is incorporated within the force of in-
fection (Eq. 2).
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(P = 0.01; Table 1). Fig. 3 illustrates simulations of the monthly
cases from estimated initial conditions from 1990 to 2012 for the
best model compared with the observed cases. The best-fitting
model captures the interannual variation (Fig. 3A) and the main
seasonal pattern of the reported cases in both regions (Fig. 3B).
Moreover, this model reveals a striking difference in the force of
infection (the instantaneous infection risk to each susceptible
individual) between both regions, with larger values in the core
than in the periphery (Fig. 4 A and B). This difference is of an
order of magnitude for the monsoon season, suggesting a higher
intensity of transmission during this period. Interestingly, the
estimated seasonality of the force of infection for the core of the
city is similar to the estimated seasonality of the force of in-
fection for cases in tropical countries, with one peak during
winter and another during the monsoon season, and sustained
transmission throughout the year. In contrast, the force of in-
fection in the periphery shows one dominant peak during winter
and a typically much weaker peak during the monsoon season,
with a more epidemic pattern with deeper troughs between those
seasons. The second peak is apparent here only in years with
large flooding events (Fig. S2): In the periphery, the transmission
rate during the monsoon season has a much lower average, yet a
more pronounced interannual response to large floods (Fig. 4C).
The maximum likelihood estimates of the parameters reveal

additional features of the dynamics (Table 2 and Figs. S3 and
S4): The coupling between the core and periphery appears weak
(αc = 0.96 and αp = 0.87), maternal immunity of newborn indi-
viduals (1=ω) wanes rapidly, the duration of infection (1=γ) is
between 7 and 15 d, and individuals in the I3 class have an in-
fection that is long-lasting (1=η, about 16-fold longer). As we
discuss below, we interpret the value of this duration as in-
dicating the presence of a transmission reservoir.
Finally, an alternative explanation for the higher overall

number of cases in the core than in the periphery, and for their
differential seasonality, might be that access to the hospital,
which is located in the former region (Fig. 1), is limited and

especially impaired during the monsoons. Differences in hospital
attendance rather than in the force of infection would explain
the empirical patterns. To test this alternative hypothesis, an
additional model was considered in which the transmission rate
is the same for both regions but their reporting rate differs. Four
reporting rates are estimated to allow for different values outside
and inside the monsoon season (June through September) for the
core and periphery, respectively. The log-likelihood of this model
was 29 units lower than our best model [log-likelihood = −1,606.9
and Akaike information criterion (AIC) = 3,256 vs. log-likelihood =
−1,577.6 and AIC = 3,205]. Additional arguments against this al-
ternative explanation are presented below.

Discussion
Consideration of two different parts of the city, a densely pop-
ulated core and a more rural periphery, appears essential to
understand seasonal and interannual variation of this major di-
arrheal infection in response to climate forcing by the monsoons.
In particular, our analysis reveals pronounced spatial heteroge-
neity in both the overall magnitude and the temporal pattern of
disease risk within the city. Our results provide evidence that
these two regions respond differentially to climate forcing, con-
sistent with previous findings for cholera in the same region (11).
The contrasting seasonal patterns described here within the city
are consistent with the findings of a recent metaanalysis on ro-
tavirus seasonality proposing that climatic conditions and the
degree of country development are better predictors than lati-
tude or geographic location per se (21, 27). The cholera study
(11) also suggested that this level of aggregation (core and pe-
riphery) is congruent with spatial variation in socioeconomic
conditions, including population density (Fig. S5). These factors
may act to modulate the effect of climate variables at local
spatial scales by enhancing contact and population susceptibility.
It is interesting to note that the climate sensitivity of cholera
has been traditionally explained with reference to the residence
of its etiological agent, the bacterium V. cholerae, in aquatic

Table 1. Likelihood-based comparison of the different models

Model Log-likelihood SE No. of parameters AIC Likelihood ratio test

With flooding effect −1577.6 0.33 25 3205.2
Without flooding effect −1582.2 0.35 23 3210.4 P = 0.01
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Fig. 3. Comparison of simulated cases with those cases reported for the core and periphery of Dhaka. Time series (A) and seasonal pattern (B) for the
observed cases (obs; black) and the mean of 1,000 model simulations (sim; red). The 10% and 90% percentiles of the simulated data are shaded in light red.
The model simulations are not next step predictions, but numerical simulations of the model forward for the whole time period of the study starting with
estimated initial conditions.

4094 | www.pnas.org/cgi/doi/10.1073/pnas.1518977113 Martinez et al.

D
ow

nl
oa

de
d 

at
 N

O
A

A
 C

E
N

T
R

A
L 

LI
B

R
A

R
Y

 o
n 

N
ov

em
be

r 
17

, 2
02

0 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518977113/-/DCSupplemental/pnas.201518977SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518977113/-/DCSupplemental/pnas.201518977SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518977113/-/DCSupplemental/pnas.201518977SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1518977113/-/DCSupplemental/pnas.201518977SI.pdf?targetid=nameddest=SF5
www.pnas.org/cgi/doi/10.1073/pnas.1518977113


environments independent of the human host (28). The fact that
rotavirus displays climate sensitivity too, in the absence of such
an environmental reservoir, suggests that the causal links in the
climate–disease connection are not strictly dependent on
specific ecological mechanisms related to transmission path-
ways (29). A similar association with sea surface temperatures
in the Pacific for cholera and shigellosis in Bangladesh sug-
gested that the ENSO acts mainly via the modulation of sec-
ondary transmission in these diarrheal diseases (e.g., by increasing
exposure to contaminated water as well as person-to-person
contact) (30).
In addition to socioeconomic and demographic factors, the

two regions of the city might more directly differ in susceptibility
to flooding itself. Flooding risk and extent appear heterogeneous
throughout the city (31), but in a way that is not consistent with
this explanation. Moreover, during extreme floods, such as the
floods of 1998, more than 50% of the city’s area can be in-
undated (32).
Our results suggest the presence of a transmission reservoir that

maintains transmission between seasons and primes the seasonal
response of the system to the monsoons. The existence of such a
reservoir is implied by the long duration of infection in the most
immune class (I3), whose individuals are asymptomatic in our
model. The more endemic epidemiological pattern of the core
region is generated in the model via this reservoir conjoined with
high transmission rates. In the core, the monsoon season peak is
highly regular, and the relatively small interannual variability in this
peak suggests rapid saturation of the transmission system during
the season. In the periphery, by contrast, low transmission rates
lead to a more epidemic pattern of dynamics (deeper troughs),
where the magnitude of the second peak is limited by the rate of
transmission during the monsoon season, which varies substantially
from year to year. Thus, the degree of interannual and seasonal
sensitivity to climate would vary across a transmission gradient, as
documented for climate-sensitive diseases, such as malaria, via
comparisons of disease dynamics in endemic vs. fringe regions
(33, 34), and within an urban landscape here.
The validity of our conclusions vis-à-vis transmission presup-

poses that the patterns we see in the incidences are not merely
due to differential hospital-seeking behavior in the two parts of
the city. Three pieces of evidence suggest that this differential
reporting rate is not the case. First, the similarity in the seasonal
pattern and overall incidence rate between the periphery of
Dhaka and the rural area of Matlab, 40 km southeast and the site
of an intensive and well-established surveillance system, supports
that the observed differences are not merely an artifact of biases
in hospital attendance rates. Second, rotavirus rates do not track
seasonal rates in hospital attendance rates (e.g., the former de-
cline in the periphery in March, April, and May when values of
the latter increase; Fig. S6). Hospital-seeking behavior is driven

by a variety of diarrheal infections, particularly by cholera
during those months. Finally, we formulated a model specifi-
cally allowing for differential reporting rates between the re-
gions and seasons; this model is rejected by the model selection
criteria (P < 0.0001).
Relationships between force of infection, reinfection fre-

quency, and severity of disease shape the age distribution of
cases. Under similar case age distributions across the city, which
we find for Dhaka (Fig. S7), the estimated higher force of in-
fection in the core implies that children there also experience
more frequent bouts of infection. Pitzer et al. (35) fitted a model
similar to ours to age-distribution data, under the assumption of
stationarity. We have focused here instead on the dynamic be-
havior of the system and fitted the model to time series of in-
cidence, ignoring age structure. The fact that these contrasting
approaches lead to models that differ in several particulars, in-
cluding the basic reproduction number, R0, emphasizes the
remaining uncertainties in model structure and parameter values.
To resolve these issues, it will be useful to fit rotavirus transmission
models to time series of age-specific incidence. Such an effort
should further elucidate rotavirus epidemiology and, in particular,
the relationship between age structure and force of infection in
models with a more complex structure than the well-understood
susceptible–infected–recovered (SIR) formulation.
The coupling of the population dynamics of the virus between

the two regions of the city is weak in our best model. This result
could be further investigated in the future with explicit spatio-
temporal information on human movement within the city based
on mobile phone data and census data, because these methods
continue to develop and have already contributed to a better
spatial understanding of transmission in other infectious diseases
(36–40). Further research of relevance to early warnings would
also benefit from better data on flooding with higher spatio-
temporal resolution, more congruent with the spatial scale of the
city and the temporal scale of the seasonal transmission dy-
namics. A finer resolution would allow the explicit consideration

A B C

Fig. 4. Force of infection and transmission rate from one simulation for the period 1997–2011. (A and B) Box plot of the force of infection by month per
region. The force of infection is defined as the per capita rate at which susceptible individuals become infected. (C) Transmission rate by month per region.
The maximum peak value relative to the mean for the monsoon season equals 1.05 and 1.36 for the core and periphery (Periph), respectively. Corresponding
estimates of R0 are provided in Supporting Information.

Table 2. Parameter estimates and confidence intervals

Description Value
Confidence
interval

1=μ Average lifespan, y 50 Fixed
1=γ Duration of infection, d 10 7–15
1=ωDuration of maternal immunity, d 1 0–110
ρ Reporting rate ð10−3Þ 2.3 1.8–3.6
αc Coupling core 0.96 0.90–0.98
αp Coupling periphery 0.87 0.31–1.00
σ Susceptibility reduction 0.19 0.12–0.24
η Additional duration of infection 0.06 0.04–0.09
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of flooding as a seasonal driver. In addition, investigation of
seasonal forecasts from hydrological models is warranted. Fi-
nally, other model structures should be investigated to examine
the nature of the reservoir better and to take into account
existing serotype variation within the virus population.
To conclude, our results underscore the importance of consid-

ering the spatial heterogeneity of large urban environments when
analyzing climate-driven transmission dynamics. Urban heteroge-
neity can enhance sensitivity of transmission dynamics to climate
factors via demographic and socioeconomic conditions, even in
infectious diseases that are not necessarily recognized as climate-
sensitive to begin with. These conditions can facilitate the persis-
tence of reservoirs of infection and, in so doing, facilitate responses
to anomalous climate events and seasonal environmental variation,
especially in the populated cities of the developing world and in the
future under climate change.

Materials and Methods
Data. Records of rotavirus cases confirmed by ELISA were obtained from the
Dhaka Hospital, through the ongoing and long-term surveillance program
of the International Centre for Diarrheal Disease Research, Bangladesh
(ICDDR,B). A sample was taken for every 25th patient who visited the hospital
from 1990 to 1995, and for every 50th patient from 1996 to 2011. These
samples were extrapolated to correct for the frequency of sampling and to
produce a consistent time series across time. The cases were aggregated by
month per administrative subdivision or thana. The population for each
thana was exponentially interpolated from the decadal censuses (1981, 1991,
and 2001) to generate the monthly values. The cases were then aggregated
for the two different parts of the city as proposed by Reiner et al. (11) (core
and periphery; Fig. 1A). The monthly data for Matlab of rotavirus cases for
the period 2010–2013 were obtained from the Matlab Hospital. The flood-
ing data consist of the annual percentage of country area flooded, provided
by the Annual Flood Report of the Flood Forecasting and Warning Centre,
Bangladesh. We drive the model with the flooding anomaly F (the flooding
index with its mean value subtracted). For data access, coauthors from the
ICDDR,B should be contacted and data access would be guided by the data-
sharing policy of the ICDDR,B.

Transmission Model. To describe the population dynamics of the disease
within a region, we adapted the model proposed by Pitzer et al. (41) and
coupled transmission between regions (Fig. 2). Newborns enter the Mi class,
where they are protected from infection by maternal Abs. This maternally
acquired immunity wanes at rate ω as individuals are transferred to the first
susceptible class S1i. Because individuals may be infected multiple times
during their lifetime (42), gaining immunity by repeated exposure, we
considered a structure with multiple classes of infected (I1, I2, I3) and sus-
ceptible (S1, S2, S3) individuals. Although the recovery class is not included,
the model takes into account partial immunity from previous exposure to
the pathogen through a reduction in susceptibility following the first in-
fection (σ). Other epidemiological parameters are described in Table 2. The
set of stochastic differential equations is given by the following:

dMi

dt
=
�
μPi +

dPi
dt

�
−ωMi − μMi

dS1i
dt

=ωMi − λiS1i − μS1i

dI1i
dt

= λiS1i − γI1i − μI1i

dS2i
dt

= γI1i − λiσS2i − μS2i

dI2i
dt

= λiσS2i − γI2i − μI2i

dS3i
dt

= γI2i + ηγI3i − λiσ
2S3i − μS3i

dI3i
dt

= λiσ
2S3i − ηγI3i − μI3i .

[1]

Pi represents population size, and the flow of newborns combined with the
death rate of each class results in population numbers equal to the population
numbers observed for the growth of the city. Furthermore, the force of in-
fection (or rate of transmission per susceptible individual) of each population is
given by the following expression:

λi = βi

�
αi
ðI1i + I2i + I3iÞ

Pi
+
�
1− αj

� �I1j + I2j + I3j
�

Pi

�
, [2]

where βi is the transmission rate for population i and (1 − αi) refers to the
movement rate of infected individuals from region i to j, and vice versa. The
transmission rate is, in turn, given by the following:

βi = exp

"X6
k=1

bkisk +bfis4F

#�
dΓ
dt

�
, [3]

and includes three components: (i) periodic functions of time to incorporate
the seasonality through six splines sk (Fig. S8) and their respective coeffi-
cients bk; (ii) the interannual effect of flooding (F); and (iii) environmental
noise through a Gamma distribution Γ, which represents stochastic vari-
ability absent in the climate covariate [details are provided in the study by
Laneri et al. (6)]. We note that the effect of climate forcing by the monsoons
enters at two different time scales, seasonal and interannual, in this ex-
pression. The seasonal effect is represented implicitly by the coefficient bki,
specifically by b4i, because the fourth spline (s4) peaks during the monsoon
months (Fig. S8); we therefore interpret the seasonal component quantified
by this term as the average influence of the monsoon, which might include
effects of humidity and temperature, and not necessarily or uniquely the
effects of flooding. Additional variability is introduced across years through
explicit consideration of an interannual effect of flooding (F), which, as a
major manifestation of the monsoons, is also localized during those same
months by its dependency on s4 and multiplicatively modulates this seasonal
component (Eq. 3).

We assume that reported cases are sampled from a negative binomial
distribution, allowing for measurement noise: casest ∼ NegBin(ρCi ,ki) with
mean ρCi and overdispersion ki. The reporting rate is ρ, and Ci represents the
symptomatic infected individuals for population i coming from the sum of
the individuals entering in class I1 and I2 at time t (Fig. 2). Two additional
models are described in Supporting Information. The first one adds an ad-
ditional parameter to the above model to allow for differential in-
fectiousness of the infected classes. The second one allows us to investigate
the hypothesis that the differences between the core and periphery arise
from biases in hospital attendance for the core and periphery.

Parameter Estimation andModel Selection. The estimation of both parameters
and initial conditions for all state variables was carried out with an iterated
filtering algorithm (MIF, for maximum likelihood iterated filtering) imple-
mented in the R package “pomp” [partially observed Markov processes (43–
45)]. This algorithm maximizes the likelihood and allows for the inclusion of
both measurement and process noise, in addition to hidden variables, which
is a typical limitation of surveillance records that provide a time series for a
single observed variable per region. The initial search of parameter space was
performed with a grid of 10,000 random parameter combinations, and the
output of this search was used as the initial conditions of a more local search.
We repeated this process until the maximum likelihood value was stationary.
All parameters were estimated, except for μ, which was based on the average
lifespan of an individual.

Likelihood-based criteria were used for model selection, including a
likelihood ratio test because the models are nested and the AIC, which pe-
nalizes the likelihood based on the number of parameters, thus taking into
account model complexity.
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